
LECTURE 2: DELIGNE COHOMOLOGY AND L-FUNCTIONS

In this lecture we introduce Deligne cohomology Hi
D(X,R(i)). These vector

spaces serve as the targets of our regulator maps. Unfortunately the definition will
seem rather unmotivated. Rest assured that the origin of Deligne cohomology is
well-understood, and the ad-hoc presentation given here is simply a by-product of
needing to keep within the schedule.

Notation 0.1. Let Λ be a subring of C. We shall write Λ(n) := (2πi)nΛ ⊂ C.

1. Deligne cohomology

Let X be a complex manifold. Consider the following complex of sheaves of
abelian groups on X:

Λ(n)D := Λ(n) → OX
d−→ Ω1

X
d−→ . . .

d−→ Ωn−1
X

in degrees 0, . . . , n − 1, where Ωi
X is the sheaf of holomorphic differential i-forms

on X.
There is a product map

∪ : Λ(n)D ⊗ Λ(m)D → Λ(n+m)D

defined by

x ∪ y :=

 xy if deg(x) = 0
x ∧ dy if deg(x) > 0 and deg(y) = m
0 otherwise .

Definition 1.1. The Deligne cohomology of X with Λ-coefficients is defined to be

Hi
D(X,Λ(n)) := Hi(X,Λ(n)D)

for integers i, n ≥ 0.

Some homological algebra 1.2. Recall that the hypercohomology of a complex of
sheaves C• onX is, by definition, the cohomology of an injective resolution C• → I•

on X. That is,

H∗(X,C•) := H∗(Γ(X, I•)) .

In the exercise sheet I will give another way of describing hypercohomolgy which is
sometimes more useful for computations.

The product map on complexes induces a product on cohomology:

∪ : Hi
D(X,Λ(n))×Hj

D(X,Λ(m)) → Hi+j
D (X,Λ(n+m)) .

If X is a smooth projective variety over C then its set of complex points Xan =
X(C) is a complex manifold, and we define

Hi
D(X,Λ(n)) := Hi

D(X
an,Λ(n)D) .

If X is a smooth projective variety over R, let XC := X ×SpecR SpecC. Then we
define

Hi
D(X,Λ(n)) := Hi

D(XC,Λ(n)D)
+
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where the superscript + means that we take the fixed elements under the endomor-
phism

F ∗
∞ ◦ (complex conjugation on Λ)

where F∞ is the anti-holomorphic involution on (XC)
an induced by complex con-

jugation (i.e. Xan
C is cut out of Pn,an

C by some polynomials with R-coefficients. The
anti-holomorphic involution is the map induced by taking complex conjugates of
the homogeneous coordinates).

For X is a smooth projective variety over R, note that under the comparison
isomorphism from de Rham to singular cohomology

H∗
dR(XC/C) ≃ H∗

dR(X/R)⊗R C ∼−→ H∗
sing(XC,C) ≃ H∗

sing(XC,Q)⊗Q C

the involution F ∗
∞ ⊗ (complex conjugation on C) on the right corresponds to the

involution id⊗ (complex conjugation on C) on the left.
One can show that Deligne cohomology satisfies a list of properties analogous to

the list given for motivic cohomology in Lecture 1 (localisation, homotopy invari-
ance etc).

Some homological algebra 1.3. Recall that for a morphism of complexes f : A• →
B•, the cone or mapping fibre of f is the complex

MF(f) := A•[1]⊕B•

where the differential is

An+1 ⊕Bn → An+2 ⊕Bn+1

(a, b) 7→ (−da, f(a) + db)

(where d means either the differential on A• or on B• depending on the situation).
The point of a cone is that it sits in a long exact sequence

. . . −→ Hi(A•)
Hi(f)−−−→ Hi(B•) −→ Hi(MF (f)) −→ Hi+1(A•)

Hi+1(f)−−−−−→ . . . .

For n ≥ 0 let Ω≥n
X = (0 → . . . → 0 → Ωn

X → Ωn
X → · · · ) be the truncated de

Rham complex. Let

f : Ω≥n
X ⊕ Λ(n) → Ω•

X

be the morphism of complexes given by the difference of the inclusions. Then

MF(f)[−1]
∼−→ Λ(n)D .

In particular, if X is a smooth complex variety over R or C, we have a long exact
sequence

. . . → Hi
D(X,R(n)) → FilnHi

dR(X)⊕Hi
sing(X,R(n)) → Hi

dR(X) → Hi+1
D (X,R(n)) → . . . .

Recall that FilnHi
dR(X) above is defined as the image of the map on cohomology

induced by the inclusion Ω≥n
X ↪→ Ω•

X (the filtration Fil•Hi
dR(X) is called the Hodge

filtration). Note that de Rham cohomology and singular cohomology are finite
dimensional vector spaces, therefore so is Deligne cohomology.
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2. Examples

Let X be a complex variety.

(1) Clearly Λ(0)D = Λ, so

Hi
D(X,Λ(0)) = Hi

sing(X,Λ)

is singular cohomology of X with Λ-coefficients.
(2) The exponential sequence

0 → (2πi)Z → OX
exp−−→ O∗

X → 0 .

shows that the hypercohomology of Z(1)D = ((2πi)Z → OX) is isomorphic
to the cohomology of O∗

X [−1] via the exponential. That is,

Hi
D(X,Z(1)) ∼= Hi−1(X,O∗

X) .

As a special case, we get H2
D(X,Z(1)) ∼= Pic(X).

(3) Consider the following morphism of complexes

(2πi)2Z OX Ω1
X

0 O∗
X Ω1

X

x 7→ exp(x/2πi)

d

d log

x 7→ dx/x

=

Notice that the complex on the top row is Z(2)D. The morphism of com-
plexes induces an isomorphism on hypercohomology, i.e.

Hi
D(X,Z(2)) ∼= Hi−1(O∗

X
d log−−−→ Ω1

X) .

(4) For n > i+ 1, the long exact sequence gives

Hi+1
D (X,R(n)) ∼= Hi

sing(X,C/R(n)).

(5) Let X = SpecC. Then we get that

Hi
D(C,R(n)) =

 R if n = i = 0
R(n− 1) if i = 1 and n ≥ 1
0 otherwise .

In particular, let F be a number field. Write X = Spec (F )× C and let
XR be its natural structure as a real variety. Then

H1
D(XR,R(n)) =

 ∏
σ∈Hom(F,C)

R(n− 1)

+

∼=
{

R(n− 1)r2 if n is even
R(n− 1)r1+r2 if n is odd .

for n ≥ 1, where r1 (resp. r2) denotes the number of real (resp. complex
pairs) of embeddings of F .
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3. The Beilinson regulator

For all i, n ≥ 0, there is a map

rB : Hi
M(X,Q(n)) → Hi

D(X,R(n)) .
called the Beilinson regulator. Unfortunately, in order to actually define rB, one
passes through the quasi-projective world. So one first needs to defines a generalised
version of Deligne cohomology in the setting that X is smooth quasi-projective,
called Deligne-Beilinson cohomology. Defining Deligne-Beilinson cohomology would
require relying on too many prerequisites for us to get through in a reasonable
amount of time, and even then the definition of rB is an order of magnitude harder
still. So, for time reasons and to keep the homological prerequisites in check, I’ll
only give an idea the definition and instead focus on some examples. Besides, we
are interested in the the Beilinson conjectures (see the next lecture), which only
concern the case where X is smooth and projective. For now let me just point out
that we have seen one instance of the Beilinson regulator already:

Let F be a number field and let X = Spec (k)× C. Then we have seen that

H1
M(X,Q(1)) H1

D(X,R(1))

C∗ ⊗Q R

∼=

rB

∼=

Under these isomorphisms, the Beilinson regulator rB corresponds to the map

C∗ ⊗Q → R
f ⊗ 1 7→ log |f | .

In particular, if F is a number field of degree [F : Q] = d = r1+2r2 the composition

F ∗ ⊗Q ∼= H1
M(F,Q(1))

base change−−−−−−−→ H1
M(XR,R(1))

rB−→ H1
D(XR,R(1)) ≃ Rr1+r2

is precisely the Dirichlet regulator. We will discuss

rB : H1
M(F,Q(n)) → H1

D(XR,R(n))
for n ≥ 1 in Lecture 4.

3.1. Quick sketch of a construction. Everything in this section can be ignored.
Let X be a quasi-projective variety. Something called Jouanolou’s trick says that
there exists an affine variety SpecR with a map SpecR → X making SpecR → X
into a vector bundle over X. Using localisation and A1-homotopy invariance, one
reduces to constructing the regulator for SpecR, where R is a finitely generated
R-algebra. There is a map

Hi
M(R,Q(n)) → H2n−i(GL(R),R) := lim−→

N

H2n−i(GLN (R),R)

(one way to see that there is such a map is by recalling the Grothendieck-Riemann-
Roch formula from Lecture 1 to view Hi

M(R,Q(n)) as a summand of K2n−i(R)⊗
Q and then knowing that there is a Hurewicz map K2n−i(R) → H2n−i(GL(R))
because algebraic K-theory is defined as a homotopy group of a space which is
close to the classifying space BGL(R)). Re-indexing, it suffices to construct a map

Hj(GL(R),R) → H2m−j
D (R,R(m)) .
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It is known that

H2n−1
sing (B•GLN (R)(C),Q) = 0

and ⊕
n≥0

H2n
sing(B•GLN (R)(C),Q(n)) = Q[c1, . . . , cN ]

where cn ∈ H2n
sing(B•GLN (R)(C),Q(n)) is the n-th Chern class of the universal

bundle E over the simplicial scheme B•GLN (R). Now, pulling back along the
evaluation map SpecR×B•GLN (R) → B•GLN gives a map for all p, q

ev∗ : Hp
D(B•GLN ,R(q)) →Hp

D(SpecR×B•GLN (R),R(q))
∼=

⊕
j

Hp−j
D (SpecR,R(q))⊗Hj

sing(B•GLN (R),R)

where the isomorphism is the Künneth formula for Deligne-Beilinson cohomology.
Then there is a cap product

∩ : H2n
D (SpecR×B•GLN (R),R(n))⊗Hi(B•GLN (R),R) → H2n−i

D (SpecR,R(n)) .

The mapHj(GL(R),R) → H2m−j
D (R,R(m)) we wanted is defined to be ev∗(cm)∩−.

Not very enlightening, perhaps! In fact, making the Beilinson regulator “explicit”
in various contexts is an important research problem that people work on.

4. L-functions

Remark 4.1. Recall, if F is a number field which is Galois over Q, and p ⊂ OF

is a prime ideal lying over a prime p ∈ Z, then the decomposition group of p in
Gal(F/Q) is the sugbroup

Dp := {σ ∈ Gal(F/Q) |σ(p) = p} .

It sits in a short exact sequence

1 → Ip → Dp → Gal(Fp/Fp) → 1

where Fp := OF /p is the residue field at p. The kernel Ip is called the inertia group
of p. Passing to the inverse limit, we get a sequence

1 → Ip → Dp → Gal(Fp/Fp) → 1

and call Dp ⊂ Gal(Q/Q) the decomposition group of p.

For simplicity, suppose that X is a smooth projective variety defined over Q.
This is no real restriction because whenever we consider a smooth projective X
defined over a number field F , we may consider it as defined over Q via

X → SpecF → SpecQ .

Fix an i ∈ {0, . . . , 2 dimX}. For a prime number p, let Frobp ∈ Dp ⊂ Gal(Q/Q)

denote a lifting of the Frobenius element in Gal(Fp/Fp) (so Frobp is only unique up
to conjugation by elements of the inertia group Ip).

Definition 4.2. The Euler factor of Hi(X) at p is

Pp(H
i(X), T ) := det(1− Frob−1

p · T |Hi
ét(XQ,Qℓ)

Ip)

for a prime ℓ ̸= p.
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Remarks 4.3. (1) The notation Hi(X) used here is purely formal. But, for
the experts/curious, Hi(X) can be given meaning; it is actually something
called a “pure motive”.

(2) The superscript Ip means the part of Hi
ét(XQ,Qℓ) fixed by the inertia ac-

tion.
(3) If p is a prime of good reduction for X, i.e. there exists a projective model

for X whose special fibre is smooth, then it follows from smooth and proper
base change that Ip acts trivially on Hi

ét(XQ,Qℓ).

(4) It is conjectured (by Serre, I think) that Pp(H
i(X), T ) does not depend

on the choice of prime ℓ ̸= p, and that Pp(H
i(X), T ) ∈ Z[T ]. Deligne’s

proof of the Weil conjectures implies this is true when p is a prime of good
reduction for X. We will have to assume this conjecture from here on to
even begin (though it is known in some interesting cases).

Definition 4.4. The L-function of Hi(X) is, for s ∈ C with Re(s) ≫ 0, defined to
be the Euler product

L(Hi(X), s) :=
∏

p prime

1

Pp(p−s)
.

Note that if one removes the (finitely many) factors for primes of bad reduction,
then the product converges absolutely for Re(s) > i

2 + 1, again by Deligne’s proof
of the Weil conjectures.

Examples 4.5. (1) Let X = SpecF for a number field F . Then one finds that

L(H0(X), s) =
∏

p⊂OF prime ideal

1

(1−Nm(p)−s)
= ζF (s)

which is precisely the Euler product for the Dedekind zeta function ζF (s).
(2) Let X = E be an elliptic curve over Q. Then

Pp(H
1(X), T ) = 1− apT + pϵ(p)T 2

where ap := 1 + p− |X(Fp)| and

ϵ(p) =

{
1 if p is a good reduction prime for X
0 otherwise .


